Nine New Gingerols from the Rhizoma of Zingiber officinale and Their Cytotoxic Activities.

نویسندگان

  • Zezhi Li
  • Yanzhi Wang
  • MeiLing Gao
  • Wanhua Cui
  • Mengnan Zeng
  • Yongxian Cheng
  • Juan Li
چکیده

Nine new gingerols, including three 6-oxo-shogaol derivatives [(Z)-6-oxo-[6]-shogaol (1), (Z)-6-oxo-[8]-shogaol (2), (Z)-6-oxo-[10]-shogaol (3)], one 6-oxoparadol derivative [6-oxo-[6]-paradol (4)], one isoshogaol derivative [(E)-[4]-isoshogaol (5)], and four paradoldiene derivatives [(4E,6Z)-[4]-paradoldiene (8), (4E,6E)-[6]-paradoldiene (9), (4E,6E)-[8]-paradoldiene (10), (4E,6Z)-[8]-paradoldiene (11)], together with eight known analogues, were isolated from the rhizoma of Zingiber officinale. Their structures were elucidated on the basis of spectroscopic data. It was noted that the isolation of 6-oxo-shogaol derivatives represents the first report of gingerols containing one 1,4-enedione motif. Their structures were elucidated on the basis of spectroscopic and HRESIMS data. All the new compounds were evaluated for their cytotoxic activities against human cancer cells (MCF-7, HepG-2, KYSE-150).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subcritical Water Extraction of Bioactive Compounds from Ginger (Zingiber officinale Roscoe)

Ginger is one of the commonly used spices that has been exhibited to have pharmaceutical activities. These therapeutic properties are mainly attribute to gingerols and shogaols. To extract these bioactive compounds, subcritical water extraction (SWE) was employed as a green method. The influence of adding co-solvents, temperature, retention time and particle size on extraction yield were invest...

متن کامل

In vitro and in vivo Production of Gingerols and Zingiberene in Ginger Plant (Zingiber officinale Roscoe)

      Ginger plant, Zingiber officinale Roscoe, is an important tropical plant used as spices and well known for its medicinal properties. It has a pungent and aromatic rhizome rich of zingiberen and gingerols. Many secondary metabolites are known to accumulate in the plant cell culture systems. So, in this research, gingerols and zingiberene production of callus cultures were compared...

متن کامل

Redox properties of ginger extracts: Perspectives of use of Zingiber officinale Rosc. as antidiabetic agent

In traditional medicine, several medicinal plants or their extracts have been used to treat diabetes. Zingiber officinale Roscoe, known commonly as ginger, is consumed worldwide in cookeries as a spice and flavouring agent. It has been used as the spice and medicine for thousands of years. The present study was undertaken to investigate the potential protective effect of Zingiber officinale Ros...

متن کامل

Gingerols of Zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes.

In this study we investigate the active constituents of the rhizome of Zingiber officinale, Roscoe (ginger) and determine their activity on glucose uptake in cultured L6 myotubes and the molecular mechanism underlying this action. Freeze-dried ginger powder was extracted with ethyl acetate (1 kg/3 L) to give the total ginger extract, which was then separated into seven fractions, consisting of ...

متن کامل

Bioassay-guided isolation and identification of antifungal compounds from ginger.

A bioassay-guided isolation of antifungal compounds from an African land race of ginger, Zingiber officinale Roscoe, led to the identification of [6], [8] and [10]-gingerols and [6]-gingerdiol as the main antifungal principles. The compounds were active against 13 human pathogens at concentrations of <1 mg/mL. The gingerol content of the African land race was at least 3 x higher than that of ty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2018